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Abstract. A substantial interpretation of electromagnetic induction (EMI) measurements requires

quantifying optimal model parameters and uncertainty of a nonlinear inverse problem. For this pur-

pose, an adaptive Bayesian Markov chain Monte Carlo (MCMC) algorithm is used to assess multi-

orientation and multi-offset EMI measurements in an agriculture field with non-saline and saline

soil. In the MCMC simulations, posterior distribution was computed using Bayes rule. The elec-5

tromagnetic forward model based on the full solution of Maxwell’s equations was used to simulate

the apparent electrical conductivity measured with the configurations of EMI instrument, the CMD

mini-Explorer. The model parameters and uncertainty for the three-layered earth model are investi-

gated by using synthetic data. Our results show that in the scenario of non-saline soil, the parameters

of layer thickness are not well estimated as compared to layers electrical conductivity because layer10

thicknesses in the model exhibits a low sensitivity to the EMI measurements, and is hence difficult

to resolve. Application of the proposed MCMC based inversion to the field measurements in a drip

irrigation system demonstrate that the parameters of the model can be well estimated for the saline

soil as compared to the non-saline soil, and provide useful insight about parameter uncertainty for

the assessment of the model outputs.15
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1 Introduction

Electromagnetic induction (EMI) with low frequency is a powerful tool to map the hydrological

processes in the vadose zone due to the sensitivity to water content and soil salinity (Jadoon et al.,

2015; Robinson et al., 2009). The use of EMI is largely motivated by the need of robust and compact

system design, easy to use, rapid acquisition, and capability to provide a large set of georeferenced20

measurements, which can be associated with the spatial variability of subsurface at the field scale

(Corwin, 2008). The EMI instrument is used to measure soil apparent electrical conductivity (ECa)-

showing distribution of averaged electrical conductivity over a particular depth range. The depth of

investigation of ECa depends on the coil spacing, the coil orientation, and the frequency of the

energizing field. Mester et al. (2011) reported that in the low induction number condition, the coil-25

orientation, offset, and frequency have major, moderate and minor effects on depth of penetration,

respectively. Soil moisture, salinity and texture cannot be directly measured with EMI measure-

ments. However, in non-saline soils, cation exchange capacity, soil moisture and texture are factors

responsible for ECa variations (Rhoades et al., 1976; Sudduth et al., 2003). Whereas in saline soil,

theECa measurement is generally dominated by the soil salinity, and the reason is the accumulation30

of more salt concentration in the topsoil due to the loss of water through evaporation (Corwin and

Lesch, 2005; Ershadi et al., 2014). The success of EMI measurements to assess soil salinity depends

on the establishment of site-specific petrophysical relationship to relate ECa with the soil salinity

estimated by electrical conductivity of the saturated paste extract (ECe) (Cook and Walker, 1992).

Several inversion algorithms have been developed for EMI measurements to improve the resolu-35

tion of subsurface features and the assessment of soil properties (Hendrickx et al., 2002; Santos et al.,

2010; Triantafilis and Monteiro Santos, 2013). The majority of these inversion algorithms solve 1-D

earth model for electromagnetic wave propagation. The model of McNeill (1980) has been exten-

sively used for low induction number and Maxwell’s equations has been utilized for high conductive

soil (ECa> 100 mS/m) where the low induction number assumption is not valid. For example, Li40

et al. (2013) used Geonics EM38 to measure ECa in a rice-paddy and did inversion using forward

model of McNeill (1980) to estimate the variation of soil salinity in a field condition. They reported

that the yield reduced by 33% in an irregular shaped patch of strong saline topsoil estimated by EMI

inversion. EMI systems are sensitive to the field-specific calibration procedure, which limits to ob-

tain precise measurements of ECa. However, in inversion modeling precise measurement of ECa45

is a prerequisite to characterize subsurface soil properties. For decades, the development and use

of quantitative EMI inversions were mainly hampered by the lack of suitable calibration methods.

von Hebel et al. (2014) used electrical resistivity tomography to calibrate EMI measurements before

their inversion of EMI measurements to estimate three-dimensional imaging of subsurface electrical

conductivity. Recently, Jadoon et al. (2015) calibrated EMI measurements via vertical electrical con-50

ductivity profile measured by capacitance sensors in different pits and later performed inversion for

calibrated multi-configuration EMI measurements to estimate the effect of soil salinity distribution
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in an acacia tree farm.

Generally these inversion algorithms are robust and provide useful estimates of subsurface prop-

erties in terms of optimal model parameters, analysis of parameter uncertainty and correlation is55

often left unaddressed. Parameter uncertainty can be associated to the measurement errors (acqui-

sition geometry, instrumental calibration and human error), modeling errors (assumptions in the

electromagnetic forward model and petrophysical relationships), prior assumptions or constraints,

parametrization, and inversion or estimation methods. Parameter uncertainty analysis can serve two

main purposes: identify the model parameters of dominant importance and provide confidence in the60

estimated model parameters (Scharnagl et al., 2011). For instance, Minsley (2011) used synthetic

data considering the characteristics of shallow ground-based EMI system, geophex GEM-2 (Huang

and Won, 2003), to estimate parameters uncertainty for a three layer model via a Bayesian Markov

Chain Monte Carlo (MCMC) approach. They showed that combining multiple configuration EMI

measurements have significantly reduced total error, was best able to capture the shallow interface,65

and have reduced regions of uncertainty at depth.

In this work, an adaptive Bayesian MCMC algorithm was used for multi-orientation and multi-

offset EMI measurements, in which the parameters posterior distribution was formulated using

Bayes rule. The posterior distribution represents the complete solution of the Bayesian inversion

problem, including prediction of optimal parameters value and the associated uncertainty. A uni-70

form prior distributions over unknown parameters for the layered earth model was formulated using

prior knowledge of parameters. EMI measurements were carried out under conditions of low and

high induction number (ECa> 100 mS/m), therefore the full solution of the Maxwell’s equation was

used as an electromagnetic forward model. Synthetic scenarios were analyzed for a three-layered

earth model to evaluate the estimated parameter and uncertainty for saline and non-saline soil us-75

ing the characteristics of EMI system, the CMD-Mini Explorer. Finally, field measurements of the

CMD-Mini explorer were used to estimate parameter uncertainty of three-layered earth model and

soil salinity distributions.

2 Materials and methods

2.1 Electromagnetic forward model80

Forward EMI response for a given layered earth model is usually calculated by the McNeill (1980)

model, which is created by using the commutative electrical conductivity distribution over a certain

depth range, and valid under condition of low induction number. The alternative method used to

calculate the forward EMI response is to solve the full solution of the Maxwell’s equation for the

magnetic field measured over a horizontal layered medium proposed by Keller and Frischknecht85

(1966) and Anderson (1979). An increased computational power made it possible to characterize

subsurface by utilizing forward models based on the Maxwell’s equation (Santos et al., 2010). On
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one hand, the effective depth of exploration is independent of ECa in a low induction number

condition, on other in high induction number condition inverse relationship was found between the

depth of exploration andECa (Callegary et al., 2007). For a combination of a vertical and horizontal90

dipole source-receiver with an offset ρ over a multilayered earth, the electromagnetic forward model

can be written as:

ECHCPa (x,ρ) =
−4ρ
ωµ0

Im
[∫ ∞

0

R0J0(ρλ)λ2dλ

]
, (1)

ECV CPa (x,ρ) =
−4
ωµ0

Im
[∫ ∞

0

R0J1(ρλ)λdλ
]
. (2)

In these expressions,ECV CPa andECHCPa represents apparent electrical conductivity - measured

in vertical and horizontal coplanar mode, µ0 represents permeability of the free space, λ indicates

the radial wave number, J0 and J1 corresponds to the zero-order and first-order Bessel functions, ω95

is angular frequency and Im shows the quadrature component. The reflection factor R0 is obtained

recursively, beginning with the lowest layer N+1, where RN+1 = 0 :

Rn(hn,σn) =
Γn−Γn+1
Γn+Γn+1

+Rn+1exp(−2Γn+1hn+1)

1+ Γn−Γn+1
Γn+Γn+1

Rn+1exp(−2Γn+1hn+1)
, (3)

Γn =
√
λ2 +ωµ0jσn, (4)

σ0 = 0, hn is the height, and σn is the electrical conductivity for the nth layer. The assumption

made in this formulation is that each layer is uniform with infinite horizontal extent. The electromag-

netic forward model, which is based on high induction number assumption, returned more reliable100

apparent electrical conductivity values than the standard sensitivity curves of McNeill (1980). EMI

measurements were carried out under high induction number conditions (ECa> 100 mS/m) result-

ing in utilization of the full solution of Maxwell’s equation for forward EMI response. Lavoue et al.

(2010) and Moghadas et al. (2012) reported that the area below the effective depth range of EMI also

contributes to the apparent electrical conductivity. Keeping the above in consideration, the whole105

measured conductivity data upto 1.5 m depth was used for the calculations of reference apparent

electrical conductivity (and also for calibration). Below this depth the electrical conductivity equals

to that of the last year measured value, which is anticipated to be a homogeneous half-space.

2.2 Bayesian Inference

Bayesian inference approach is used to express the uncertainties in the system using a suitable like-110

lihood function. Given a set of unknown parameters, the prior distributions of the given model are

formulated and Bayes rule is then used by incorporating observational data to calculate posterior

distribution (Arulampalam et al., 2002; Sivia, 2006). Bayesian inversion gained a lot of interests in

recent years and has been applied in different applications, including climate, ocean and geophysical
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modeling (Malinverno, 2002; Zedler et al., 2012; Olson et al., 2012; Altaf et al., 2014; Sraj et al.,115

2014).

Suppose a set of data ({yi}ni=1) is available and assume a certain model to describe the data. Let

α be the set of parameters defining our model, then according to Bayes rule

p(α|{yi}ni=1)∝ p({yi}ni=1|α) p(α), (5)

where p(α) is the prior distribution of α that represents the a priori knowledge about α, i.e. before

considering the data. p({yi}ni=1|α) denotes the likelihood function: the probability of acquiring the120

data given α. p(α|{yi}ni=1) is the posterior probability: the probability that α is true given the data

({yi}ni=1).

Let’s consider the forward model M, for the evaluation of the data as a function of the parameters

such that:

y=M(α). (6)

Let ε be a random variable which represents the discrepancy between our model M(α), and the125

observations y as:

ε= y−M(α), (7)

Specifically, we assume that ε follows a Gaussian distribution of mean zero and variance σ2, i.e.

ε∼N(0,σ2). The likelihood function can then be represented as

p({yi}ni=1|α) =
n∏

i=1

1√
2πσ2

exp
(
− (yi−Mi(α))2

2σ2

)
. (8)

The variance (σ2) depends on the observational data y. Together with unknown parameters α,

σ2 is an additional unknown estimated parameter. Finally, the joint posterior distribution using the130

Bayesian inference is expressed as:

p(α,σ2|{yi}ni=1)∝
n∏

i=1

1√
2πσ2

exp
(
− (yi−Mi(α))2

2σ2

)
p(α)p(σ2). (9)

The choice of a prior is a key step in the inference process. Here, an informative uniform prior

for all five (three conductivities and two thickness) parameters is assumed, with αk in the range

[αmaxk −αmink ]; i.e:

p(αk) =





1
αmax

k −αmin
k

for αmink <αk ≤αmaxk ,

0 otherwise ,
(10)

The noise variance σ2, we assume a Jeffreys prior (Sivia, 2006) given as:135

5

Hydrol. Earth Syst. Sci. Discuss., doi:10.5194/hess-2016-299, 2016
Manuscript under review for journal Hydrol. Earth Syst. Sci.
Published: 8 August 2016
c© Author(s) 2016. CC-BY 3.0 License.



p(αk) =





1
σ2 for σ2> 0,

0 otherwise ,
(11)

The problem now reduces to simulate (sample) this posterior. Generally, the most appropriate

computational strategy for a multidimensional parameters space is the Markov Chain Monte Carlo

(MCMC) method. We have applied an adaptive Metropolis MCMC algorithm (Haario et al., 2001;

Roberts and Rosenthal, 2009) to sample the posterior distribution.

3 Results and Discussion140

3.1 Synthetic Data

Two set of scenarios were considered to test the MCMC approach to evaluate the estimated param-

eters and their uncertainty using synthetic data for CMD Mini-Explorer configurations. Figure 1 (a)

and (b) shows a three-layer earth model of low and high conductivity for non-saline soil and high

soil salinity, respectively. In both scenarios thicknesses for the three-layer earth model was concep-145

tualized by a plow horizon (0.25 m thick), with an intermediate subsoil layer (0.50 m thick) and

underlying consolidated layer up to 1.5 m depth. Usually the plowing horizon has less soil moisture

as compared to the deeper horizon because of evaporation and infiltration processes. Therefore in

the scenario of non-saline soil the plowing horizon had low electrical conductivity of 15 mS/m as

compared to the intermediate and consolidated soil layers (Figure 1 (a)). Whereas in the saline soil150

scenario, salt accumulations on the surface of soil due to evaporation of water, as a result the elec-

trical conductivity of plowing horizon, is considered higher 1800 mS/m as compared to the deeper

layers (Figure 1 (b)). In the agricultural field, the increase in the soil salinity is generally due to the

use of poor quality of water or the excessive use of fertilizers. Forward response of both scenarios

was calculated in HCP and VCP via Equations (1) and (2), respectively, for EMI configuration se-155

tups using the characteristics of CMD-Mini Explorer of three receiver coils respectively placed at

0.32, 0.71 and 1.18 m distances from the receiver.

In both scenarios, six configurations, three each for HCP and VCP with different spacings were

taken as an output for forward models. Let α= (σ1,σ2,σ3,h1,h2)T be a vector of model control

parameters. σ1, σ2, and σ3 are layer conductivities, and h1 and h2 thicknesses. Bayesian inference160

was used to estimate these 5 parameters that minimize the errors between observed and modeled

HCP and VCP. An adaptive MCMC method was used to sample the posterior distributions and

consequently update α distributions according to the observed data. All the results explained below

are based on 104 MCMC samples. Parameter range for h1 and h2 was fixed between 0.05−0.6

m in each scenario. In the non-saline scenario, parameter range for σ1, σ2 and σ3 was considered165

between 5-100 mS/m and the saline soil scenario range was fixed between 5-3000 mS/m. A uniform

prior distribution function was considered in both scenarios.
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Figure 2 (a) and (b) depicts the observed, estimated (modeled) and range of ECa picked from

the chain of MCMC simulation for six configurations of synthetic case considered for non-saline

and saline soil, respectively. X-axis represents VCP and HCP with three coil spacing (ρ32, ρ71,170

ρ118). In a non-saline scenario, the layer electrical conductivity increases with the depth (Figure 1

(a)), and is reflected in the observed and modeled ECa in the VCP and HCP with increasing trend

for bigger spacing (Figure 2 (a)). The ECa value for the VCP and HCP with maximum spacing

of 1.8 m between transmitter and receiver corresponds to deeper horizon and in the case of saline

soil scenario the layer conductivity decreases (Figure 1 (b)) and as a result ECa values in VCP175

and HCP configuration exhibits a decreasing trend (Figure 2 (b)). The electromagnetic forward

model is sensitive to high electrical conductive soil, so the modeled ECa values for the saline soil

scenario matches well with the observed as compared to the non-saline scenario. Mismatch between

the observed and modeled ECa values for non-saline soil is due to low sensitivity of the forward

electromagnetic model to the low electrical conductivity.180

Figure 3 (a) shows the true parameter values (red line), the value of the estimated parameters using

MCMC simulations (blue dash line) for the non-saline soil scenario. The computed MCMC sam-

ples were used to obtain the marginalized posterior distributions based on kernel density estimation

(KDE) (Parzen, 1962). The 95 percent of the KDE for each parameter is shown by the shaded gray

background (Figure 3 a). The resulting marginalized posterior pdfs of the three conductivities and185

two thicknesses are shown in Figure 3 (b − f). The pdfs of each parameter (Figure 3 b−f) show a

single peak, corresponding to the optimal parameter value. Electrical conductivities of three layers

(σ1, σ2 and σ3) were comparatively well estimated as compared to the layer thicknesses. Differ-

ent uniform prior distribution functions were also considered for the layer thicknesses and in each

MCMC simulation the model converges close to the prior instead of true layer thicknesses. It seems190

that the topography of the objective function is flat in the direction of layer thicknesses and do not

change with the layer thickness picked in each iteration of the MCMC simulation. This suggests that

the electromagnetic model is not sensitive to the layer thicknesses for the low conductive soil layer.

Figure 4 illustrates the true and estimated depth profile of electrical conductivity for saline sce-

nario, and the KDE of the marginalized posterior distributions for the three layer conductivities (σ1,195

σ2 and σ3) and the two layer thicknesses (h1 and h2). The shaded gray background shows the 95

percent of the KDE for each parameter (Figure 4 a). The vertical electrical conductivity profile was

well optimized by MCMC simulation. The electrical conductivity of the top two layers were well

estimated as compared to the consolidated layer with low electrical conductivity. Furthermore, in

the six configurations of CMD Mini-Explorer, the HCP and VCP configuration with spacing 1.18 m200

are mostly sensitive to the consolidated layer and the remaining four configurations are sensitive to

upper horizon. A big range of parameter space was searched by MCMC simulation (Figure 4 b −
e), which illustrate parameters sensitivity to the electromagnetic model.
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3.2 Experimental Data

Measurements were carried out in a farm, where acacia trees were irrigated with saline groundwater.205

The farm is located at a distance of 6 km from the Red Sea coast at Al-Qadeimah, Makkah province,

Saudi Arabia. EMI measurements were carried out with the interval of 2 m over a 40 m-long transect,

along which three acacia trees were irrigated using drip irrigation. At each location, EMI measure-

ments using CMD-Mini explorer system gives six different values of apparent electrical conductivity

(using two coil orientations and three offsets), each responds to different depth ranges. Ten pits were210

dug along the same transect and in each pit the vertical σb profile was measured at 15 locations

within a depth range of 0.05-1.5 m via 5TE capacitance sensors (Decagon Devices, Pullman, USA).

5TE and EMI measurements were carried out on the same day 8 hr after the drip irrigation system

was stopped, so that the soil moisture concentration below the drippers be avoided, and the time be

given for the reduction of soil moisture impact due to root water uptake, evaporation and infiltration215

(Jadoon et al., 2015).

Figure 5 shows soil electrical conductivity measured in ten pits along a transect and the mod-

eled soil electrical conductivity as estimated by the Markov Chain Monte Carlo simulation for

multi-configuration electromagnetic induction measurements. The pit locations along the transect

are shown by black triangle and cubic interpolation of 150 5TE sensor measurements were used220

to construct the two dimensional profile of measured σ (Figure 5 (a)). The groundwater used to

irrigate the acacia trees has an electrical conductivity of 4200 mS/m. The three patterns of high

electrical conductivity is due to infiltration front and soil salinity near three acacia trees. In total, 21

multi-configuration EMI measurements were performed along a transect and calibrated with in situ

measurements obtained through capacitance sensors (Jadoon et al., 2015). Three-layer earth model225

was considered for Bayesian inference to estimate five parameters (σ1,σ2,σ3,h1,h2) and their un-

certainty based on the 15,000 MCMC samples. For all MCMC simulations, the parameter space

for optimization was set relatively large, having the range of values used for low and high electri-

cal conductivity of soil; namely, 0<σ1 < 3000 mS/m, 0<σ2 < 3000 mS/m, 0<σ3 < 3000 mS/m,

0.05<h1 < 0.6 m, and 0.05<h1 < 0.6 m. In the depth section of soil electrical conductivity ob-230

tained by EMI MCMC simulations, the effect of infiltration patterns and the soil salinity due to

the drip irrigation near three acacia trees can be observed (Figure 5 (b)). The obtained soil electri-

cal conductivity values by MCMC simulation are in a good agreement with sensor measurements

performed in pits (Figure 5 (a)).

Figure 6 (a) and (b) shows the measured, estimated (modeled) and range of ECa picked from the235

chain of MCMC simulation for six multi-configuration of CMD-Mini Explorer for non-siline and

saline soil, respectively. Three coil spacing for each VCP and HCP is represented on x-axis. EMI

measurement is shown for non-saline and saline soil is at the location 4 and 9 of the pit (Figure 5 (a)),

respectively. The soil was completely dry for non-saline soil as no irrigation was applied, whereas

in the case of saline soil the moisture in the soil was in the range of 0.005-0.19 at the time of EMI240
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and sensor measurements. In non-saline soil, the measured six ECa values are in the range of 5-60

mS/m and the modeled ECa value are in the range of 23-38 mS/m Figure (6 (a)). The range of ECa

picked from the last 10,000 MCMC simulation is in the range of 0-75 mS/m. As we observed in

the synthetic non-saline soil scenario that the electromagnetic forward model was not sensitive to

the low electrical conductive soil similarly the fit between the measured and modeled ECa is not in245

good agreement with the real measurements (Figure 6 (a)). Furthermore, the misfit may be due to

the large search parameter space in the MCMC simulations. In the case of saline soil, the electrical

conductivity of the top 50 cm soil is high due to the saline infiltration and soil salinity. This effect

can be seen in the decreasing trend of the measured ECa for the VCP and HCP measurements with

bigger coil spacing (Figure 6 (b)). The measured and modeled ECa are in good agrement and this250

is due to the sensitivity of the electromagnetic forward model to high electrical conductive soil.

Figure 7 plots the vertical profile of electrical conductivity for non-saline soil measured by capac-

itance sensors (red line), the value of the estimated parameters using the MCMC simulations (blue

dash line), and the KDE of the marginalized posterior distributions for the three layer conductivities

and the two layer thicknesses. CMD-Mini Explorer measurements at the pit 4 for non-saline soil was255

used for the analysis. In Figure 7 (a), the shaded area shows the 95% KDE distribution limits, the

measured vertical profile of soil electrical conductivity fall within the shaded area in the top depth

0-0.7 m and below this depth modeled soil electrical conductivity is over estimated. The mismatch

between the measured and modeled ECa for the maximum coil separation Hρ118 and Vρ118 is the

cause of over estimation of modeled soil electrical conductivity. The marginalized posterior pdfs260

of the three conductivities and two thicknesses are shown in Figure 7 (b − f). The pdfs of each

parameter (Figure 7 b−f) exhibit a single peak and corresponds to the optimal parameter value. The

peak of the σ3 is flat between 30-38 mS/m and seems the topography of the objective function do

not change within this range of conductivity in each iteration of the MCMC simulation.

Finally, Figure 8 plots the vertical profile of electrical conductivity for saline soil measured by265

capacitance sensors (red line), the value of the estimated parameters using the MCMC simulations

(blue dash line), and the KDE of the marginalized posterior distributions for the three layer conduc-

tivities and the two layer thicknesses. CMD-Mini Explorer measurements at the pit 9 for saline soil

was used for the analysis. The shaded area in Figure 8 (a) plots the 95% KDE distribution limits,

and the whole measured vertical profile of soil electrical conductivity fall within the shaded area.270

This suggests that the electrical conductivity is well estimated. The marginalized posterior pdfs of

the three conductivities and two thicknesses as shown in Figure 8 (b − f), exhibit a single peak for

each parameter except layer thickness h2 which is flat which shows that the measured data were not

useful to refine our prior knowledge for h2. The posterior pdfs of first two conductivities (σ1 and

σ2) and layer thickness h1 appear to be a precise Gaussian shape with a clear Maximum A Posteriori275

(MAP) values. For conductivity parameter σ3, we notice a posterior with a well defined peak but no

clear pdf shape.
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Conventional estimation of a single best-fit model with linear uncertainty usually does not trace

ambiguity in the models, and may lead to a misguiding or imprecise interpretation. For instance,

Jadoon et al. (2015) used global optimization algorithm to estimate soil salinity by using multi-280

configuration EMI measurements without estimating uncertainties in the model parameters. A com-

prehensive strategy is thus required for the assessment of non-uniqueness and uncertainty in the

model parameters. This research has attempted to evaluate model parameters and their uncertainties

using the Bayesian inference framework for both synthetic and ground-based EMI field measure-

ments to estimate the soil salinity in a drip irrigation system. Such analysis helps to provide insight285

about parameters estimate and uncertainties. The synthetic and the field measurements show that

the electromagnetic forward model used for the CMD-mini explorer measurements is less sensitive

to the layer thicknesses. Furthermore, the model parameters for the saline soil can be well estimated

as compared to the case of non-saline soil. Future research will focus to implement the Bayesian

inference approach on time-lapse EMI measurements in different agricultural fields to monitor the290

soil dynamics, estimate the model parameters and their uncertainties.

4 Conclusion

An adaptive Bayesian MCMC algorithm has been introduced for the model assessment and uncer-

tainty analysis of multi-orientation and multi-offset EMI measurements. The algorithm has been

tested for CMD-Mini Explorer with both synthetic and field measurements conducted in an agricul-295

ture field over a non-saline and saline soil. Using Bayesian inference, marginalized posterior pdfs

were computed for three subsurface electrical conductivities (σ1, σ2, and σ3 ) and two layer thick-

nesses (h1 and h2) using MCMC. To the best of the authors’ knowledge, this is the first study in

which the MCMC technique is incorporated for both the saline and non-saline soils for realistic low

frequency EMI measurements.300

The experimental results showed that the MCMC simulations can improve the reliability of the

electromagnetic forward model to estimate the subsurface electrical conductivity profiles. Analysis

shows that the electromagnetic forward model is less sensitive to the non-saline soil as compared to

the saline soil. The proposed approach is flexible and can be implemented for various low-frequency

ground-based EMI system and can provide subsurface electrical conductivity distribution and uncer-305

tainty of model parameters.
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Fig. 1. Three-layer synthetic earth model of electrical conductivity for (a) non-saline soil and (b) saline soil in

the top horizon.
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Fig. 2. Observed electrical conductivity obtained from the forward response of the six different configuration of

CMD-Mini Explorer (red star), estimated (modeled) earth electrical conductivity (blue asterisk) and the range

of ECa simulated by MCMC for (a) non-saline and (b) saline soil scenarios.
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Fig. 3. Summary of the MCMC simulation for the synthetic three layer earth model of non-saline soil. (a) True

(red line) and estimated parameter (blue dash-line) for the vertical electrical conductivity profile, and the gray

background with the 95 percent confidence interval of kernel distribution estimation (KDE). (b − f) show the

KDE of the marginalized posterior distributions for the three layer conductivities (σ1, σ2 and σ3) and two layer

thicknesses (h1 and h2).
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Fig. 4. Summary of the MCMC simulation for the synthetic three layer earth model of saline soil. (a) True

(red line) and estimated parameter (blue dash-line) for the vertical electrical conductivity profile, and the gray

background with the 95 percent confidence interval of kernel distribution estimation (KDE). (b − f) show the

KDE of the marginalized posterior distributions for the three layer conductivities (σ1, σ2 and σ3) and two layer

thicknesses (h1 and h2).
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Fig. 5. (a) electrical conductivity (mS/m) measured by the 5TE capacitance sensors from 10 soil pits along

transect and the location of the soil pits is indicated by black triangles (Jadoon et al., 2015), (b) the soil electrical

conductivity obtained by using Markov Chain Monte Carlo simulation for multi-configuration electromagnetic

induction measurements.
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Fig. 6. Measured six different configuration of CMD-Mini Explorer (red star), estimated (modeled) earth

electrical conductivity (blue asterisk) and the range of ECa simulated by MCMC for (a) non-saline soil at pit 4

and (b) saline soil at pit 9 location.
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Fig. 7. Summary of the MCMC simulation for three-layer earth model by considering CMD-Mini explorer

measurement over a non-saline soil. (a) True (red line) and estimated parameter (blue dash-line) for the vertical

electrical conductivity profile, and the gray background with the 95 percent confidence interval of kernel distri-

bution estimation (KDE). (b − f) show the KDE of the marginalized posterior distributions for the three layer

conductivities (σ1, σ2 and σ3) and two layer thicknesses (h1 and h2).
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Fig. 8. Summary of the MCMC simulation for three-layer earth model by considering CMD-Mini explorer

measurement over a saline soil. (a) True (red line) and estimated parameter (blue dash-line) for the vertical

electrical conductivity profile, and the gray background with the 95 percent confidence interval of kernel distri-

bution estimation (KDE). (b − f) show the KDE of the marginalized posterior distributions for the three layer

conductivities (σ1, σ2 and σ3) and two layer thicknesses (h1 and h2).
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